

Bunch coalescing system at low energy for high intensity machines

Anna Yagodnitsyna Novosibirsk State University Supervisor: Kiyomi Seiya /AD

Fermilab, 9/1/2010

Intro

- Project X high intensity proton accelerator complex Intensity of the beam I_x= 2.5*10^11 ppb (5 times higher than current intensity)
- High intensity beam at low energy research is required (ex: space charge effects)
- We need to create a system providing high intensity beam at low energy

Longitudinal dynamics and bunch coalescing

$$\Delta E^{2} + \frac{2v^{2}E_{s}eV}{\eta\omega_{rf}\tau c^{2}}(\cos\varphi + \varphi\sin\varphi_{s}) = const$$

Bunch coalescing at low and at high energy

Synchrotron oscillation frequency (65 kV, 2.5 MHz)

$$f_h \approx 5Hz$$

$$f_1 \approx 46Hz$$

$$\frac{\Delta T_l}{\Delta T_h} = \frac{\Omega_{sl}}{\Omega_{sh}} \approx 9$$

The goal of my work

To perform simulations of coalescing process at low energy and optimize the parameters for 85% coalescing efficiency

To make bunch coalescing at low energy experimentally. Compare with simulations.

Simulations

Initial conditions: 0.1eVs

Rotation at 2.5MHz bucket

Required energy spread before rotation < dEmax= 3 MeV

Adiabatic dumping

The minimum energy spread after adiabatic dumping is dEmin= 4.6 MeV

Simulations

Bunch stretching

 $dE_{max} = 5 MeV$

Efficiency = 85%

Coalescing parameters

Process	Parameters
Adiabatic	Adiabatic time = 0.02 s
dumping	Vinitial = 1MV ,Vfinal = 30 kV
Bunch stretching	Stretching time = 2.5 ms±0.1ms
Rotation at 2.5 MHz	Voltage = 75 kV.
	Time before stretching 7.7±0.1ms, time after stretching 17.4±0.1ms
	ms

But now there is only 1.3 ms time resolution

Adiabatic dumping

Conclusion

- Simulations of bunch coalescing at low energy were performed. The parameters for timing and voltage were optimized. It was shown that 85% coalescing efficiency could be achieved at low energy.
- Adiabatic dumping at low energy was performed experimentally. The results agree with simulations.

Additional slide:

Bunch coalescing process at low energy

Additional slide: Bunch stretching

